
MA 3046 - Matrix Analysis Problem Set 2

1. Show that, for any nonzero vectors u and v in C
√ m, the product uvH is a rank one

matrix in C
√ m×m. Also show that, if vH u 6= −1, then

I− uvH

vHu + 1
=

(
I + uvH

)−1

(Note that
(
I + uvH

)
is commonly called a rank one perturbation of the identity.)

solution:

Let A = uvH . Then, since u 6= 0, there is a sequence of elementary row
operations and a corresponding product of elementary matrices, denoted E
such that

Eu =




1
0
...
0




But then

EA = E
(
uvH

)
= (Eu)vH =




1
0
...
0


vH =




vH

0
...
0




This, however, implies that there is a sequence of elementary row operations
that will reduce uvH to an echelon form with precisely one (nonzero) pivot
row. Since the rank is, by definition, the number of pivot rows in the echelon
form, then uvH is then of rank one.

If vH u 6= −1, then direct computation shows

(
I − uvH

vHu + 1

) (
I + uvH

)
= I − uvH

vHu + 1
+ uvH − uvHuvH

vHu + 1

But note that vH u is a scalar, and can therefore be moved right or left in the
last term. So the expression becomes

I− 1
vHu + 1

uvH + uvH − vHu
vHu + 1

uvH

= I +
(
− 1

vHu + 1
+ 1 − vHu

vHu + 1

)
uvH

= I + (0)uvH = I
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solution:

Therefore, since uvH is square, then by definition

I− uvH

vHu + 1
=

(
I + uvH

)−1
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2. Consider the following matrices:

A =




1 2 2
2 1 −2
2 −2 1


 , B =




1 2 −1
−2 1 1

1 −2 1


 , C =




1
6

1
2

1
6

1
2

3
6

1
2

5
6 −1

2




D =
[

1 i
i 1

]
, E =




1
2

1
2 − i

2
1
2

1
2

1
2

i
2

−1
2

1
2 −1

2
1
2 − i

2

1
2 −1

2 −1
2

i
2




where i =
√
−1. Which, if any, of these are unitary? Which, if any, are orthogonal? Of

those that are neither, which are easily converted to unitary ones?

solution:

a. Consider A. Note that A is real and symmetric. Therefore, by defini-
tion:

AH A = AT A = A A =




1 2 2
2 1 −2
2 −2 1







1 2 2
2 1 −2
2 −2 1




Direct computation shows that

AH A =




9 0 0
0 9 0
0 0 9




Since this matrix is not the identity, then, by definition, A is neither unitary
nor orthogonal. However, because the product is a diagonal matrix, then the
columns of A are orthogonal, but not orthonormal vectors. Therefore, in order
to create a matrix which is both unitary and orthogonal, we simply need to
normalize each column of the original matrix. This produces:

Ã =




1
3

2
3

2
3

2
3

1
3 −2

3
2
3

−2
3

1
3




which is easily shown to satisfy ÃH Ã = ÃT Ã = I.

2 - 2 - 1



MA 3046 - Matrix Analysis Problem Set 2

solution:

b. Consider B. Note that B is real, but not symmetric. Therefore, by defini-
tion:

BH B = BT B =




1 −2 1
2 1 −2

−1 1 1







1 2 −1
−2 1 1

1 −2 1


 ,

Direct computation the shows:

BH B =




6 −2 −2
−2 9 −3
−2 −3 3




This result is not an indentity, and is not even diagonal. Therefore B is neither
unitary nor orthogonal, and moreover there is no easy way (at least at this
point) to create a unitary matrix from B.

solution:

c. Consider C. Note that C is real, but not square. Therefore, by definition,:

CH C = CT C =
[ 1

6
1
6

3
6

5
6

1
2

1
2

1
2 −1

2

]



1
6

1
2

1
6

1
2

3
6

1
2

5
6 −1

2




Direct computation the shows:

CH C =
[

1 0
0 1

]

This result is an indentity. Therefore, the columns of C are orthonormal vectors.
However, C is not square, Therefore, according to the definition in our text, C
can be called neither unitary nor orthogonal. (Although the columns of C might
be a good starting place from which to build a 4 × 4 unitary matrix!)
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solution:

d. Note that D is complex. Therefore, by definition, D cannot be orthogonal,
since this term applies only to real matrics. However:

DH D =
[

1 −i
−i 1

] [
1 i
i 1

]
=

[
2 0
0 2

]

Since this matrix is not the identity, then, by definition, D is not unitary.
However, because, as in part a., the product is a diagonal matrix, then the
columns of D are orthogonal, but not orthonormal vectors, and, again we can
create a matrix which is unitary by simply normalizing each column of the
original matrix. This produces:

D̃ =




1√
2

i√
2

i√
2

1√
2




which is easily shown to satisfy D̃H D̃ = I.

solution:

e. Consider E. Note that E is complex. Therefore, by definition, E cannot be
orthogonal, since this term applies only to real matrics. However, we can show
directly that:

EH E =




1
2

1
2

1
2

1
2

1
2

1
2 −1

2 −1
2

i
2

− i
2

1
2

−1
2

1
2 −1

2
i
2 − i

2







1
2

1
2

− i
2

1
2

1
2

1
2

i
2 −1

2

1
2

−1
2

1
2

− i
2

1
2 −1

2 −1
2

i
2




=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




Since the product EH E produces the identity, then, by definition, E is unitary.
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3. Consider the matrix:

C =




1
6

5
6

3
6

−1
6

5
6 −1

6
1
6

3
6




Show that CHC = I, but CCH 6= I and so CH 6= C−1. Explain why this is not a
contradiction.

solution:

Direct computation shows

CHC =
[ 1

6
3
6

5
6

1
6

5
6 −1

6 −1
6

3
6

]



1
6

5
6

3
6 −1

6
5
6 −1

6
1
6

3
6




=
[

1 0

0 1

]
= I

but

CCH =




1
6

5
6

3
6 −1

6
5
6 −1

6
1
6

3
6




[ 1
6

3
6

5
6

1
6

5
6 −1

6 −1
6

3
6

]
=




26
36 − 2

36 0 16
36

− 2
36

10
36

16
36 0

0 16
36

26
36

2
36

16
36

0 2
36

10
36


 6= I

This is not a contradiction because C is not square, and therefore a left-
inverse (i.e. CH) need not (in fact will not) be a right-inverse. In fact, the
inverse (i.e. C−1 is undefined for non-square matrices.)
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4. Consider the matrix-vector equation

B [x ]B =




1
3

2
3 −2

3
2
3

−2
3

−1
3

2
3

1
3

2
3


 [x ]B =




1

−7

2




a. Solve this system for [x ]B by Gaussian elimination.

solution:

For Gaussian elimination, first form the augmented matrix




1
3

2
3 −2

3

... 1

2
3 −2

3 −1
3

... −7

2
3

1
3

2
3

... 2




and proceed

R2 − 2R1

R3 − 2R1




1
3

2
3 −2

3

... 1

0 −2 1
... −9

0 −1 2
... 0




Then

R3 − (1/2)R2




1
3

2
3 −2

3

... 1

0 −2 1
... −9

0 0 3
2

... 9
2




Backsolving

c3 =
(9/2)
(3/2)

= 3

c2 =
−9 − c3

(−2)
=

−12
−2

= 6

c1 =
1 − (2/3)c2 + (2/3)c3

(1/3)
=

1 − (2/3)(6) + (2/3)(3)
(1/3)

=
−1
(1/3

= −3
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solution:

and so

[x]B =



−3

6
3




b. Solve this system for [x ]B, without using elimination, but using the facts that B
is unitary and [x ]B represents the coordinates of [ 1 − 7 2 ]H in terms of the columns
of B.

solution:

Since we are given that B is unitary, then BHB = I, and so

B [x]B = x =⇒ [x]B = BHx

i.e., in this case, by direct computation

[x]B




1
3

2
3

2
3

2
3 −2

3
1
3

−2
3

−1
3

2
3







1

−7

2






−3

6

3




which is (and must be for unitary matrices) precisely the same result as obtained
by Gaussian elimination.

2 - 4 - 2



MA 3046 - Matrix Analysis Problem Set 2

5. Show that if Q(1) and Q(2) are any two unitary matrices of the same size, then their
product, i.e. Q(1)Q(2) is also Unitary.

solution:

By definition, the product Q(1)Q(2) will be unitary if and only if

(
Q(1)Q(2)

)H (
Q(1)Q(2)

)
= I

But the Hermitian of a product is the product of the individual Hermitians,
with the order reversed, i.e.

(
Q(1)Q(2)

)H

= Q(2)H
Q(1)H

Therefore

(
Q(1)Q(2)

)H (
Q(1)Q(2)

)
=

(
Q(2)H

Q(1)H
) (

Q(1)Q(2)
)

= Q(2)H
Q(1)H

Q(1)

︸ ︷︷ ︸
I

Q(2)

= Q(2)H
Q(2) = I

and so, by definition, Q(1)Q(2) is unitary.
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6. Consider the three most common measures for the norm of a vector x = (x1, x2, . . . , xn)
(or the equivalent row or column vector forms):

‖x ‖1 = |x1| + |x2| + · · ·+ |xn|

‖x ‖2 =
√

x2
1 + x2

2 + · · ·x2
n

‖x ‖∞ = max
i
|xi|

Compute each of these norms for each of the following vectors.
a. x = (−1, 2,−2)

solution:

‖x ‖1 = |−1| + |2| + |−2| = 5

‖x ‖2 =
√

(−1)2 + (2)2 + (−2)2 =
√

9 = 3

‖x ‖∞ = max {|−1|, |2|, |−2|} = 2

b. x = (−4)

solution:

‖x ‖1 = |−4| = 4

‖x ‖2 =
√

(−4)2 = 4

‖x ‖∞ = max {|−4|} = 4

c. x = (10,−3, 12)

solution:

‖x ‖1 = |10| + |−3| + |12| = 25

‖x ‖2 =
√

(10)2 + (3)2 + (12)2 =
√

253 = 15.9 . . .

‖x ‖∞ = max {|10|, |−3|, |12|} = 12
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d. x = (102,−17,−1)

solution:

‖x ‖1 = |102| + |−17| + |−1| = 120

‖x ‖2 =
√

(102)2 + (−17)2 + (−1)2 =
√

10694 = 103.4 . . .

‖x ‖∞ = max {|102|, |−17|, |−1|} = 102

e. x = (.1,−.2,−.4)

solution:

‖x ‖1 = |.1| + |−.2| + |−.4| = .7

‖x ‖2 =
√

(.1)2 + (−.2)2 + (−.4)2 =
√

0.21 = 0.458 . . .

‖x ‖∞ = max {|.1|, |−.2|, |−.4|} = .4

f. x = (−12,−2, 4, 6, 5)

solution:

‖x ‖1 = |−12| + |−2| + |4||6||5| = 29

‖x ‖2 =
√

(12)2 + (−2)2 + (4)2 + (6)2 + (5)2 =
√

225 = 15

‖x ‖∞ = max {|−12|, |−2|, |−4|, |6|, |5|} = 12

Note that, in all of these cases,

‖x ‖∞ ≤ ‖x ‖2 ≤ ‖x ‖1

2 - 6 - 2
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7. Any vector norm induces a corresponding matrix norm according to the relationship:

‖A ‖ = max
x

‖Ax ‖
‖x ‖

Show that, for any matrix norm and any scalar α, ‖αA ‖ = |α| ‖A ‖

solution:

We know that for each of the vector norms, from which the matrix norms are
derived, that

‖αx ‖ = |α| ‖x ‖ , e.g. ‖αx ‖1 = |α| ‖x ‖1

since that is simply one of the basic “rules” which any norm must satisfy in
order to be a norm. But, because (αA)x = α (Ax) for it all matrices, and
because Ax is also a vector, then, in any norm,

‖ (αA)x ‖ = ‖α (Ax) ‖ = |α|‖Ax ‖

Therefore, by definition:

‖αA ‖ = max
x

‖ (αA) x ‖
‖x ‖ = max

x

|α|‖Ax ‖
‖x ‖ = |α|max

x

‖Ax ‖
‖x ‖ ≡ |α|‖A ‖

2 - 7 - 1
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8. Consider the three matrices:

a.

[
2 −5 1
1 3 2

]
b.




10 7 −2
6 4 −1

−2 1 1


 c.




1 −1
2 2
1 2




For each of these matrices, and for each of the norms described in problem 6:
(i.) Pick five different “input” vectors (x). (Make sure at least some of them have

some negative components!)

(ii.) For each of these inputs, compute the ratio
‖Ax ‖
‖x ‖

(iii.) Based on your answers to part b., determine a lower bound for ‖A ‖
(iv.) Compare your lower bound to the actual corresponding value of ‖A ‖ as deter-

mined by MATLAB’s relevant norm( ) command.

solution:

a. For
[

2 −5 1
1 3 2

]
, pick as inputs

x(1) =




1
1
1


 , x(2) =




1
−1

1


 , x(3) =




2
2
1


 , x(4) =




2
−2

1


 , x(5) =




1
−1

2




Then Ax(1) =
[
−2

6

]
and so

‖Ax(1) ‖1

‖x(1) ‖1

=
8
3

.= 2.67 ,
‖Ax(1) ‖2

‖x(1) ‖2

=
√

40√
3

.= 3.65 ,
‖Ax(1) ‖∞
‖x(1) ‖∞

=
6
1

= 6

Continuing, we compute Ax(2) =
[

8
0

]
and so

‖Ax(2) ‖1

‖x(2) ‖1

=
8
3

.= 2.67 ,
‖Ax(2) ‖2

‖x(2) ‖2

=
8√
3

.= 4.62 ,
‖Ax(2) ‖∞
‖x(2) ‖∞

=
8
1

= 8

Similarly, Ax(3) =
[
−5
10

]
, and so

‖Ax(3) ‖1

‖x(3) ‖1

=
15
5

= 3 ,
‖Ax(3) ‖2

‖x(3) ‖2

=
√

125√
9

.= 3.73 ,
‖Ax(3) ‖∞
‖x(3) ‖∞

=
10
2

= 5

2 - 8 - 1
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solution:

Ax(4) =
[

15
−2

]
and so

‖Ax(4) ‖1

‖x(4) ‖1

=
17
5

= 3.4 ,
‖Ax(4) ‖2

‖x(4) ‖2

=
√

229√
9

.= 5.04 ,
‖Ax(4) ‖∞
‖x(4) ‖∞

=
15
2

= 7.5

and finally Ax(5) =
[

9
2

]
and so

‖Ax(5) ‖1

‖x(5) ‖1

=
11
4

= 2.75 ,
‖Ax(5) ‖2

‖x(5) ‖2

=
√

85√
6

.= 3.76 ,
‖Ax(5) ‖∞
‖x(5) ‖∞

=
9
2

= 4.5

The results of the above can be summarized in the following table:

x(1) x(2) x(3) x(4) x(5) Max. MATLAB

‖Ax(i) ‖1
‖x(i) ‖1

2.67 2.67 3 3.4 2.75 3.4 8

‖Ax(i) ‖2
‖x(i) ‖2

3.65 4.62 3.73 5.04 3.76 5.04 5.97

‖Ax(i) ‖∞
‖x(i) ‖∞

6 8 5 7.5 4.5 8 8

b. For




10 7 −2
6 4 −1

−2 1 1


 , pick as inputs

x(1) =




1
1
1


 , x(2) =




1
1

−1


 , x(3) =




2
2

−1


 , x(4) =



−1

1
2


 , x(5) =



−1

1
−2




Then Ax(1) =




15
9
0


 , Ax(2) =




19
11
−2


 , Ax(3) =




36
21
−3


 ,

Ax(4) =



−7
−4

5


 , and Ax(5) =




1
0
1
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solution:

Performing similar computations to those in part a. yields the following table:

x(1) x(2) x(3) x(4) x(5) Max. MATLAB

‖Ax(i) ‖1
‖x(i) ‖1

8 10.67 12 4 .50 12 18

‖Ax(i) ‖2
‖x(i) ‖2

10.1 12.7 13.9 3.87 .58 13.9 14.4

‖Ax(i) ‖∞
‖x(i) ‖∞

15 19 18 3.5 .5 19 19

b. For




1 −1
2 2
1 2


 , pick as inputs

x(1) =
[

1
1

]
, x(2) =

[
1

−1

]
, x(3) =

[
2

−1

]
, x(4) =

[
−1

2

]
, x(5) =

[
1

−2

]

Then Ax(1) =




0
4
3


 , Ax(2) =




2
0

−1


 , Ax(3) =




3
2
0


 ,

Ax(4) =



−3

2
3


 , and Ax(5) =



−1

6
5




Again performing similar computations to those in part a. yields the following
table:

x(1) x(2) x(3) x(4) x(5) Max. MATLAB

‖Ax(i) ‖1
‖x(i) ‖1

3.5 1.5 1.67 2.67 4 4 5

‖Ax(i) ‖2
‖x(i) ‖2

3.54 1.58 1.61 2.10 3.52 3.52 3.57

‖Ax(i) ‖∞
‖x(i) ‖∞

4 2 1.50 1.50 3 4 4
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9. The infinity norm of a vector:

‖x ‖∞ = max
i

|xi|

i.e., the component with the greatest magnitude, induces a corresponding matrix norm:

‖A ‖∞ = max
x

‖Ax ‖∞
‖x ‖∞

= max
‖x ‖∞=1

‖Ax ‖∞

Show that ‖A ‖∞ = max
i





n∑

j=1

|aij|



, or, in other words, the matrix infinity norm

is just the largest of the sums of the magnitudes of the coefficients on each row. For this
reason, the matrix infinity norm is commonly called the row-sum norm.

solution:

First note that because the vector infinity norm is based on the largest
component,

‖x ‖∞ = max
j

|xj | = 1 =⇒ |xj | ≤ 1 , all j

Therefore, because the absolute value of a sum can be no greater than the sum
of the absolute values, and because no single component of any vector x of
interest here can exceed one in magnitude

|(Ax)i| =

∣∣∣∣∣∣

n∑

j=1

Aijxj

∣∣∣∣∣∣
≤

n∑

j=1

|Aijxj | =
n∑

j=1

|Aij | · |xj | ≤
n∑

j=1

|Aij | , all i

Therefore max
i

{|(Ax)i|} ≤ max
i





n∑

j=1

|Aij |





Finally, noting that the right hand side of this last equation is independent
of the components of x (provided they are all less than or equal to one in
magnitude), we conclude

‖A ‖∞ ≡ max
‖x ‖∞=1

[
max

i
{|(Ax)i|}

]
≤ max

i





n∑

j=1

|Aij |
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solution:

Now, for any particular matrix A, let imax denote the row on which this
maximum row sum occurs. Then define the (input) vector x̃ by

x̃j = sign [Aimaxj ] =
{

+1 , Aimaxj ≥ 0
−1 , Aimaxj < 0

Observe that ‖ x̃ ‖∞ = 1, and for every j

Aimaxj x̃j = sign [Aimaxj ] · Aimaxj = |Aimaxj |

Therefore, by the way we constructed imax and x̃,

n∑

j=1

Aimaxj x̃j =
n∑

j=1

|Aimaxj | = max
i





n∑

j=1

|Aij |



 = max

i





∣∣∣∣∣∣

n∑

j=1

Aijx̃j

∣∣∣∣∣∣





(The last equality occurs because |x̃j | = 1 for all j, and therefore, if a larger
sum were possible on any other row, it would imply we had chosen imax in-
correctly.)

But now, because x̃ is only one of the vectors for which ‖x ‖∞ = 1,

‖A ‖∞ ≡ max
‖x ‖∞=1

[
max

i
{|(Ax)i|}

]
= max

‖x ‖∞=1


max

i





∣∣∣∣∣∣

n∑

j=1

Aij xj

∣∣∣∣∣∣








≥ max
i





∣∣∣∣∣∣

n∑

j=1

Aij x̃j

∣∣∣∣∣∣



 = max

i





n∑

j=1

|Aij |





However, at this point, we have shown that both

‖A ‖∞ ≤ max
i





n∑

j=1

|Aij |



 and ‖A ‖∞ ≥ max

i





n∑

j=1

|Aij |





The only possible conclusion is: ‖A ‖∞ = max
i





n∑

j=1

|Aij |



 .
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10. Consider the following vectors and matrices:

(a.) x =



−6

4
−4


 (b.) y =



−9

2
−9
−2


 (c.) z =




−1
−4

2
5
1




(d.) A =




8 8 −4 2
5 −6 −1 −2

−7 −4 −9 0
−10 3 10 −3


 (e.) B =




−6 −10 −2 7 0
−6 5 7 −10 4

2 −1 1 4 −1
−5 9 −6 −2 −4
−6 −1 3 7 −6




Find the infinity norm of each.

solution:

For parts (a.)-(c.), the infinity norm is simply the coordinate with the largest
absolute value. Therefore

‖x ‖∞ = |−6| = 6 , ‖y ‖∞ = |−9| = 9 , and ‖ z ‖∞ = |5| = 5

For parts (d.) and (e.), the infinity norm is the maximum of the sum of the
absolute values of the elements on each row. Therefore:

A =




8 8 −4 2
5 −6 −1 −2

−7 −4 −9 0
−10 3 10 −3




→
∑

|a1j | = 22
→

∑
|a2j | = 14

→
∑

|a3j | = 20
→

∑
|a4j | = 26

and so ‖A ‖∞ = 26. Similarly

B =




−6 −10 −2 7 0
−6 5 7 −10 4

2 −1 1 4 −1
−5 9 −6 −2 −4
−6 −1 3 7 −6




→
∑

|a1j| = 25
→

∑
|a2j| = 32

→
∑

|a2j | = 9
→

∑
|a3j| = 26

→
∑

|a4j| = 23

and so ‖B ‖∞ = 32.
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11. Show directly that the one norm, defined by

‖x ‖1 =
n∑

i=1

|xi| = |x1| + |x2| + · · · + |xn|

satisfies the following general properties:
(a.) ‖x ‖1 > 0 , x 6= 0

solution:

By definition of the absolute value, |xi| ≥ 0 for all xi. Therefore, the sum of any
number of absolute values cannot be negative. Now suppose x 6= 0. Then x
must have at least one non-zero component. We can assume, without loss of
generality, that it’s x1. So, |x1| > 0. Then

‖x ‖1 =
n∑

i=1

|xi| = |x1|︸︷︷︸
>0

+ |x2| + · · ·+ |xn|︸ ︷︷ ︸
≥0

≥ |x1| > 0

(b.) ‖x + y ‖1 ≤ ‖x ‖1+‖y ‖1 , where x and y are any vectors. (This so-called triangle
inequality essentially ensures the shortest “distance” between points must be the
line connecting them.)

solution:

A basic property of the absolute value is |α + β| ≤ |α| + |β|, for any real val-
ues α and β. Therefore, since each component of x + y is precisely the sum of
the corresponding components of x and y:

‖x + y ‖1 =
n∑

i=1

|xi + yi| ≤
n∑

i=1

[ |xi| + |yi| ] =
n∑

i=1

|xi|
︸ ︷︷ ︸
≡‖x ‖1

+
n∑

i=1

|yi|
︸ ︷︷ ︸
≡‖y ‖1

or, in summary:
‖x + y ‖1 ≤ ‖x ‖1 + ‖y ‖1

(c.) ‖αx ‖1 = |α|‖x ‖1 , where x is any vector and α is any scalar. (This formula
ensures that multiplying any vector by a scalar factor simply changes its “length”
by that factor, and also that ‖0 ‖1 = 0.)
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solution:

By definition, the ith component of αx is precisely αxi, where xi is the corre-
sponding component of x. Therefore:

‖αx ‖1 =
n∑

i=1

|αxi| =
n∑

i=1

|α||xi| = |α|
{

n∑

i=1

|xi|
}

= α‖x ‖1
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12. Using MATLAB, graph {
Ax | x2

1 + x2
2 = 1

}

for each of the following matrices. Based on your figures, estimate the singular values
of each matrix, and then compare your estimates to the results of MATLAB’s svd( )
command.

a.

[
3 1
1 1

]

solution:

One example of MATLAB code that can generate these plots is simply

a= [ 3, 1 ; 1, 1 ] ;

theta = 0:0.01:2*pi ;

x = cos(theta) ; y = sin(theta) ;

helipse = a*[ x; y ] ;

plot( x, y, helipse(1,:), helipse(2,:), ’- -’) ;

axis equal ;

where the last command is necessary to ensure the cirle of radius one looks like
a circle. In this case, the resulting figure looks like:

where the semimajor and semiminor axes of the resulting ellipse have been
added. From this figure, it appears that these axes are of lengths

σ1
.= 3.5 and σ2

.= .6

These “eyeball” values compare favorably with the results returned by MAT-
LAB, i.e.

σ1 = 3.4142 and σ2 = 0.5858
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b.

[
−4 −1

2 2

]

solution:

We can use the identical MATLAB code from part a., except, of course,
changing the entries in the matrix, i.e. :

a= [ -4, -1 ; 2, 2 ] ;

(Note the commas between elements are optional, but recommended in the case
of negative entries.) In this case then, the resulting figure looks like:

where the semimajor and semiminor axes of the resulting ellipse have again
been added. From this figure, it appears that, in this case, these axes are of
lengths

σ1
.= 5.0 and σ2

.= 1.3

These “eyeball” values again compare favorably with the results returned by
MATLAB, i.e.

σ1 = 4.8442 and σ2 = 1.2386

c.
[

2 1
2 1

]

solution:

We can again use the identical MATLAB code from part a., except, of
course, again changing the entries in the matrix, i.e. :

a= [ 2 1 ; 2 1 ] ;
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solution:

In this case then, the resulting figure looks like:

In this case, however the ellipse has degenerated to simply a straight line seg-
ment. This is a clear indication of at least one zero (or near zero) singular
value. (The other singular value here will be the half-length of the line seg-
ment.) Therefore, from this figure, it appears that the singular values here
are

σ1
.= 3.1 and σ2

.= 0

These “eyeball” values again compare favorably with the results returned by
MATLAB, i.e.

σ1 = 3.1623 and σ2 = 0
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13. Find the singular value decomposition of each of the following matrices, and compare
your results to the results of MATLAB’s svd( ) command.

a.
[

3 0
0 1

]

solution:

In general, finding the SVD of a matrix is an extremely difficult computa-
tional task. However, there are certain exceptions, and this is one. Specifically,
in this case, because A is already diagonal:

A =
[

3 0
0 1

]
= I

[
3 0
0 1

]
I

which is, by definition, an SVD of A, with U = I and VH = I.

The MATLAB command [ u s v ] = svd(a) produces exactly the same
SVD.

b.
[

3 0
0 −2

]

solution:

This case is virtually identical to part a., except for the negative entry
on the diagonal, because, by definition, singular values must be non-negative.
That problem, however is very easily remidied, since we can just write:

A =
[

3 0
0 −2

]
= I

[
3 0
0 2

] [
1 0
0 −1

]

which is, again, by definition, an SVD of A, with U = I and

VH =
[

1 0
0 −1

]
=⇒ V =

[
1 0
0 −1

]
=⇒ VHV = I

and so V is unitary.
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solution:

The MATLAB command [ u s v ] = svd(a) produces a slight variant
of this SVD, i.e.

u =
[

1 0
0 −1

]
, s =

[
3 0
0 2

]
and v =

[
1 0
0 1

]

(Such a situation, i.e. agreement except for plus and minus changes, are quite
common in numerical linear algebra.)

c.
[

1 1
1 1

]

solution:

In this case, the matrix is not diagonal, so we can’t use the “trick” from
part a. or b. However, note that the columns of the matrix are identical, and
therefore, trivially,

Col(A) = span
{[

1
1

]}
and Null(A) = span

{[
1

−1

]}

But we do know that, in general, Col(A) is the span of the columns of U
corresponding to the non-zero singular values of A, and Null(A) is the span of
the columns of V corresponding to the zero singular values. So the columns
of U and V corresponding, respectively, to the non-zero and zero singular
values of A are (except for possible sign reversals):

u(1) =

[ 1√
2

1√
2

]
and v(2)

[ 1√
2

− 1√
2

]

Since we are working in IR2, and we know that U and V are unitary and
therefore their columns are orthonormal bases for IR2, then we can easily extend
the existing columns above to the full matrices

U =

[ 1√
2

1√
2

1√
2

− 1√
2

]
and V =

[ 1√
2

1√
2

1√
2

− 1√
2

]
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solution:

(Obviously, U = V in this case. That actually, should not be surprising,
based on the fact A is symmetric.) Direct computation will now show that

UHAV =

[ 1√
2

1√
2

1√
2

− 1√
2

] [
1 1

1 1

] [ 1√
2

1√
2

1√
2

− 1√
2

]
=

[
2 0

0 0

]
≡ Σ

which is, of course, equivalent to A = UΣ VH , i.e. an SVD of A.

The MATLAB command [ u s v ] = svd(a) produces a slight variant
of this SVD, i.e.

u =
[

0.7071 −0.7071
0.7071 0.7071

]
, s =

[
2 0
0 0

]
and v =

[
0.7071 −0.7071
0.7071 0.7071

]

which, again, is identical to our result except for the not uncommon sign change.
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14. Using the singular value decomposition, show that, for any matrix A,

Null(AHA) =Null(A)

solution:

We know that any matrix A has a full singular value decomposition, i.e.

A = UΣ VH where UHU = I , VHV = I ,

U and V are square, and Σ is diagonal, with only real, non-negative entries.
But then

AHA =
(
UΣ VH

)H
UΣ VH =

(
VΣ HUH

)
UΣ VH = VΣ H

(
UHU

)
︸ ︷︷ ︸

I

Σ VH

or
AHA = VΣ 2VH

where Σ 2 is the diagonal matrix whose entries are the squares of the singular
values of A. But, by definition, because V is unitary, VΣ 2VH is a singular
value decomposition of AHA. Moreover, the null space of AHA is known to
be precisely the span of the columns of V corresponding to the zero diagonal
elements of Σ 2. Therefore, since the diagonal elements of Σ 2 are exactly
the squares of the diagonal elements of Σ , then the zero diagonal elements
of Σ are identical with the zero diagonal elements of Σ , and so the columns
of V corresponding to the zero diagonal elements of Σ 2 are identical with the
columns of V corresponding to the zero diagonal elements of Σ . Hence their
spans are identical, and so

Null(AH A) = Null(A)
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15. The SVD is commonly developed from an eigenvalue and eigenvector approach instead
of from the viewpoint of Euclidean norms. Specifically, we can show that, for any matrix A,
the singular values satisfy σi =

√
|λi|, where the λi are the eigenvalues of AHA, and the

right singular vectors of A (i.e., the v(i)) are the eigenvectors of AHA. This leads to
constructing the (reduced) SVD via the following procedure:

(i.) Form the product AH A.
(ii.) Find the eigenvalues (λi) and eigenvectors (v(i)) of that product.
(iii.) For each λi 6= 0, define σi =

√
λi , where σ1 ≥ σ2 ≥ . . . ≥ σk > 0.

(iv.) For each σi 6= 0, define u(i) = 1
σi

Av(i), where v(i) is the eigenvector associated
with λi.

(Unfortunately, as we shall see later, this procedure is not particularly well suited for
“large” matrices.) Apply this procedure to find the SVD of the matrix

A =




26 18
1 18

14 27




solution:

Proceeding in order:
(i.) Form the product AH A.

AH A =
[

26 1 14
18 18 27

]


26 18
1 18

14 27


 =

[
873 864
864 1377

]

(ii.) Find the eigenvalues (λi) and eigenvectors (v(i)) of that product.
The characteristic equation of the product is

det
(
AH A− λI

)
= det

[
(873 − λ) 864

864 (1377 − λ)

]

= λ2 − 2250λ + 455625 = 0

=⇒ λ = 2025 , 225

Then, for λ1 = 2025 ,
(
AH A − λ1I

)
v(1) = 0 leads to the augmented matrix:


−1152 864

... 0

864 −648
... 0


 =⇒ v(1) =

[ 3
5
4
5

]

where we have normalized the eigenvector v(1).
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solution:

Similarly, for Then, for λ2 = 225 ,
(
AH A − λ2I

)
v(2) = 0 leads to the

augmented matrix:

[
648 864

... 0

864 1152
... 0

]
=⇒ v(2) =

[ 4
5

−3
5

]

where we have again normalized the eigenvector v(2). Therefore, for the SVD,

V =
[ 3

5
4
5

4
5

−3
5

]

where the columns of V are obviously orthonormal. (Note also that V is
symmetric, and so, in this case, we will also have VH = V. Note also V
is square, and therefore unitary. So we omit the “hat” that we use to signify
reduced matrices.)

(iii.) For each λi 6= 0, define σi =
√

λi , where σ1 ≥ σ2 ≥ . . . ≥ σk > 0.
So

λ1 = 2025 =⇒ σ1 = 45 and λ2 = 225 =⇒ σ2 = 15

and so

Σ =
[

45 0
0 15

]

(iv.) For each σi 6= 0, define u(i) = 1
σi

Av(i), where v(i) is the eigenvector
associated with λi.

So, for σ1 = 45, we have

u(1) =
1
σ1

Av(1) =⇒ u(i) =
1
45




26 18
1 18

14 27




[ 3
5
4
5

]
=




2
3
1
3
2
3




(Note, we must use A here, not AH A.)
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solution:

Similarly, or σ2 = 15,

u(2) =
1
σ2

Av(2) =⇒ u(i) =
1
15




26 18
1 18

14 27




[ 4
5

−3
5

]
=




2
3

−2
3

−1
3




Therefore, combining these two, we have

Û =




2
3
1
3
2
3

2
3

−2
3

−1
3




(Note we now use the “hat” since this U is not square, and so we are generating
a true reduced SVD. This also means we should have used Σ̂ earlier as well.)

Direct computation will verify that

ÛΣ̂ VH =




2
3
1
3
2
3

2
3

−2
3

−1
3




[
45 0
0 15

] [ 3
5
4
5

4
5

−3
5

]
=




26 18
1 18

14 27


 = A

Furthermore, we could, if we chose, show that the full SVD of A was:

A =




2
3
1
3
2
3

2
3

−2
3

−1
3

1
3
2
3

−2
3







45 0 0
0 15 0
0 0 0




[ 3
5
4
5

4
5

−3
5

]
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16. Repeat the calculation of the (reduced) SVD using the eigenvalue and eigenvector
approach from problem 15 for the matrix:

A =




2 4
2 4
2 4
2 4




solution:

Proceeding in order:
(i.) Form the product AH A.

AH A =
[

2 2 2 2
4 4 4 4

]



2 4
2 4
2 4
2 4


 =

[
16 32
32 64

]

(ii.) Find the eigenvalues (λi) and eigenvectors (v(i)) of that product.
The characteristic equation of the product is

det
(
AH A − λI

)
= det

[
(16 − λ) 32

32 (64 − λ)

]

= λ2 − 80λ = 0

=⇒ λ = 80 , 0

Then, for λ1 = 80 ,
(
AH A− λ1I

)
v(1) = 0 leads to the augmented matrix:


−64 32

... 0

32 −16
... 0


 =⇒ v(1) =

[ 1√
5

2√
5

]

where we have again normalized the eigenvector v(1).
Similarly, for Then, for λ2 = 0 ,

(
AH A − λ2I

)
v(2) = 0 leads to the

augmented matrix:

[
16 32

... 0

32 64
... 0

]
=⇒ v(2) =

[ 2√
5

− 1√
5

]
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solution:

However, for the reduced SVD, we only need the eigenvectors for the
nonzero eigenvalues. So, in this case, we can discard v(2). Therefore, for
the reduced SVD,

V̂ =

[ 1√
5

2√
5

]

where we utilize the “hat” to denote a reduced form.

(iii.) For each λi 6= 0, define σi =
√

λi , where σ1 ≥ σ2 ≥ . . . ≥ σk > 0.
So

λ1 = 80 =⇒ σ1 = 4
√

5

(Since λ2 is zero, we don’t use it!). So

Σ̂ = [ 4
√

5 ]

(iv.) For each σi 6= 0, define u(i) = 1
σi

v(i), where v(i) is the eigenvector
associated with λi.

So, for σ1 = 4
√

5, we have

u(1) =
1
σ1

Av(1) =⇒ u(i) =
1

4
√

5




2 4
2 4
2 4
2 4




[ 1√
5

2√
5

]
=




1
2
1
2
1
2
1
2




In this case, because σ2 = 0, we do not use

u(2) =
1
σ2

Av(2)

to compute u(2), since the result would be undefined. (And, in general, we do
not need u(i) for the reduced SVD when σi = 0.)
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solution:

Therefore, in this case, we have

Û =




1
2
1
2
1
2
1
2




Direct computation will verify that

ÛΣ̂ V̂H =




1
2
1
2
1
2
1
2


 [ 4

√
5 ]

[ 1√
5

2√
5

]
=




2 4
2 4
2 4
2 4


 = A

Furthermore, in this case, the full SVD would be

A =




1
2
1
2
1
2
1
2

1
2

−1
2
1
2

−1
2

1
2
1
2

−1
2

−1
2

1
2

−1
2

−1
2
1
2







4
√

5 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




[ 1√
5

2√
5

2√
5

− 1√
5

]
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17. Repeat the calculation of the SVD using the eigenvalue and eigenvector approach from
problem 15 for the matrix:

A =
[

16 −2
13 14

]

solution:

First form the matrix:

ATA =
[

16 13
−2 14

] [
16 −2
13 14

]
=

[
425 150
150 200

]

and find the characteristic polynomial:

P3(λ) = det
∣∣∣∣
425 − λ 150

150 200 − λ

∣∣∣∣ = λ2 − 625λ + 62500 = (λ − 125)(λ − 500)

=⇒ λ = 500, 125 =⇒ σ = 10
√

5, 5
√

5

Find the associated eigenvectors. For λ1 = 500:

(
AT A− λ1I

)
v(1) = 0 =⇒

[
−75 150 0
150 −300 0

]
=⇒ v̂(1) =

[
2
1

]

which normalizes to:

v(1) =

[ 2√
5

1√
5

]

Similarly, for λ2 = 125,

(
AT A − λ2I

)
v(2) = 0 =⇒

[
300 150 0
150 75 0

]
=⇒ v(2) =

[− 1√
5

2√
5

]

(after normalization). And so

V =

[ 2√
5

1√
5

− 1√
5

2√
5

]

(Observe the columns of V are obviously orthonormal!)
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solution:

Next, construct the elements of U corresponding to the non-zero singular values
of A, i.e. to σ1 and σ2.
For σ1 = 10

√
5,

u(1) =
1
σ1

Av(1) =
1

10
√

5

[
16 −2
13 14

][ 2√
5

1√
5

]
=

[ 3
5
4
5

]

(Note that u(1) is already normalized. This should have been expected!)

Then, for σ2 = 5
√

5,

u(2) =
1
σ2

Av(2) =
1

5
√

5

[
16 −2
13 14

][− 1√
5

2√
5

]
=

[−4
5
3
5

]

(Note that, as also expected, u(2) is already normalized.

At this point, u(1) and u(2) form a basis for <2, so we’re basically done,
i.e.

U =
[ 3

5
4
5

−4
5
3
5

]

The corresponding matrix of singular values here is

Σ =
[

10
√

5 0

0 5
√

5

]

Direct computation (MATLAB) will verify that

A = UΣVT

or [
16 −2
13 14

]
=

[ 3
5
4
5

−4
5
3
5

] [
10

√
5 0

0 5
√

5

][ 2√
5

1√
5

− 1√
5

2√
5

]T

2 - 17 - 2



MA 3046 - Matrix Analysis Problem Set 2

18. Repeat the calculation of the (reduced) SVD using the eigenvalue and eigenvector
approach from problem 15 for the matrix:

A =




3 1
1 3
0 0




solution:

First form the matrix:

AT A =
[

3 1 0
1 3 0

] 


3 1
1 3
0 0


 =

[
10 6
6 10

]

and find the characteristic polynomial:

P3(λ) = det
∣∣∣∣
10 − λ 6

6 10 − λ

∣∣∣∣ = λ2 − 20λ + 64

= (λ − 4)(λ − 16) =⇒ λ = 16, 4 =⇒ σ = 4, 2

Find the associated eigenvectors. For λ1 = 16:

(
ATA − λ1I

)
v(1) = 0 =⇒

[
−6 6 0

6 −6 0

]
=⇒ v̂(1) =

[
−1

1

]

which normalizes to:

v(1) =

[ 1√
2

1√
2

]

Similarly, for λ2 = 4,

(
ATA − λ2I

)
v(2) = 0 =⇒

[
6 6 0
6 6 0

]
=⇒ v(2) =

[− 1√
2

1√
2

]

(after normalization). And so

V =

[ 1√
2

1√
2

− 1√
2

1√
2

]
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solution:

Next, construct the elements of U corresponding to the non-zero singular values
of A, i.e. to σ1 and σ2.
For σ1 = 4,

u(1) =
1
σ1

Av(1) =
1
4




3 1
1 3
0 0




[ 1√
2

1√
2

]
=




1√
2

1√
2

0




(Note that u(1) is already normalized. This should have been expected!)

Then, for σ2 = 2,

u(2) =
1
σ2

Av(2) =
1
2




3 1
1 3
0 0




[− 1√
2

1√
2

]
=



− 1√

2

1√
2

0




(Note that, as also expected, u(2) is already normalized.

At this point, we still need on more orthonormal vector, u(3), in order for
the u(i) to form a basis for IR3. There is only one choice possible here, which
we may find either by Gram-Schmidt, or QR, or by inspection. That choice is:

u(3) =




0

0

1




and therefore

U =




1√
2

1√
2

0

− 1√
2

1√
2

0

0

0

1




The corresponding matrix of singular values here is

Σ =




4 0

0 2

0 0
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solution:

Direct computation (MATLAB) will verify that

A = UΣVT

or 


3 1
1 3
0 0


 =




1√
2

1√
2

0

− 1√
2

1√
2

0

0

0

1







4 0

0 2

0 0




[ 1√
2

1√
2

− 1√
2

1√
2

]T
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19. The equation AV̂ = ÛΣ̂ always implies that AV̂ V̂H = ÛΣ̂ V̂H . However, if V̂ is
“only” a nonsquare matrix with orthonormal columns, the latter does not immediately
allow us to conclude the reduced SVD, i.e. that A = ÛΣ̂ V̂H , since, it it is quite likely
that V̂ V̂H 6= I. However, if we can append enough additional orthonormal columns to V̂
to create a square matrix, and if all of those additional columns lie in Null(A), then we

can still derive the reduced SVD. To see why this is true, assume V =
[

V̂ ˆ̂V
]
, where all

the columns of ˆ̂V lie in Null(A). Show that, in this case

V̂ V̂H = I− ˆ̂V ˆ̂V
H

and therefore AV̂ V̂H = A.

solution:

Expressed in terms of block matrices, observe that

V =
[

V̂ ˆ̂V
]

=⇒ VVH =
[

V̂ ˆ̂V
] [

V̂
ˆ̂V

]

But, because, with the added columns, V is now square with orthonormal
columns, it is unitary, and VH = V−1. Therefore,

I = VVH =
[

V̂ ˆ̂V
] [

V̂
ˆ̂V

]
= V̂ V̂H + ˆ̂V ˆ̂V

H

or, equivalently V̂ V̂H = I − ˆ̂V ˆ̂V
H

But then

AV̂ V̂H = A
(
I− ˆ̂V ˆ̂V

H
)

= A − A ˆ̂V ˆ̂V
H

However now, because every column of ˆ̂V lies in Null(A), then A ˆ̂V = 0,
which immediately implies that the second term on the right in the expression
immediately above must also vanish. Therefore,

AV̂ V̂H = A
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